Grzegorz Niemirowski, ECE, 190266
Final documentation for EPRO2 final task (project 8)
Abstract

The task was to create a program for compression and decompression of text messages. It was considered to use Burrows-Wheeler transform (BWT) + Move To Front (MTF) + Huffman Coding. There are provided test files.

Usage

The program would has no interface because no interaction is needed. Program gets two parameters: input file and output file. Input file is opened and read. Data are compressed using BWT + MTF + Huffman algorithms. Then they are written to output file. The program operates on text files and has problems with some special characters. It works well with typical text and C source codes. To decompress a file user has to use additional parameter, e.g.:
./final –d compressed decompressed

In current version the parameter isn’t checked so it doesn’t have to be “-d”.

Algorithm
Combination of three algorithms is used: Burrows-Wheeler transform (BWT), Move To Front (MTF) and Huffman Coding.
BWT does not process its input sequentially, but instead processes a block of text as a single unit. The idea is to apply a reversible transformation to a block of text to form a new block that contains the same characters, but is easier to compress by simple compression algorithms. The transformation tends to group characters together so that the probability of finding a character close to another instance of the same character is increased substantially. Text of this kind can easily be compressed with fast locally-adaptive algorithms, such as move-to-front coding in combination with Huffman. Briefly, the algorithm transforms a string S of N characters by forming the N rotations (cyclic shifts) of S, sorting them exicographically, and extracting the last character of each of the rotations. Astring L is formed fromthese characters, where the ith character of L is the last character of the ith sorted rotation. In addition to L, the algorithm computes the index I of the original string S in the sorted list of rotations. Surprisingly, there is an efficient algorithm to compute the original string S given only L and I . The sorting operation brings together rotations with the same initial characters. Since the initial characters of the rotations are adjacent to the final characters, consecutive characters in L are adjacent to similar strings in S. If the context of a

character is a good predictor for the character, L will be easy to compress with a simple locally-adaptive compression algorithm. In the following sections, we describe the transformation in more detail, and show that it can be inverted. We explain more carefully why this transformation tends to group characters to allow a simple compression algorithm to work more effectively. We then describe efficient techniques for implementing the transformation and its inverse, allowing this algorithm to be competitive in speed with

Lempel-Ziv-based algorithms, but achieving better compression. Finally, we give the performance of our implementation of this algorithm, and compare it with

well-known compression programs.
Move To Front encodes an instance of character ch by the count of distinct characters seen since the next previous occurrence of ch. When applied to the string L, the output of a move-to-front coder will be dominated by low numbers, which can be efficiently encoded with a Huffman coder.
In Huffman Coding characters are replaced by short binary tokens. The more popular the character is, the shorter is the token. One token can’t be a prefix of the other. It gives a way to write data in more compressed form. The main problem is to create good Huffman tree. It can be easy done with the following algorithm:
1. First count the amount of times each character appears. This is the frequency of each character.

2. Create a collection of n small, one-node trees (where n is the number of distinct characters in the input stream). Each of these n trees represent a distinct input character and have a weight corresponding to their count tallied in the analysis step.

3. From the collection, pick out the two trees with the smallest weights and remove them. Combine them into a new tree whose root has the weight equal to the sum of the weights of the two trees and with the two trees as its left and right subtrees. Add the new combined tree back into the collection.

4. Continue this process - select the two trees (with anywhere from 1 to (n - 1) nodes) with lowest weight, join these by a new root node, set the root node's weight, and place the new tree back into the pool. Repeat this process until one tree encompassing all the input weights has been constructed.

If at any point there is more than one way to choose the two trees of smallest weight, the algorithm chooses arbitrarily. The resultant large tree with a single root node is called a Huffman tree. This way, the nodes with the highest weight will be near the top of the tree, and have shorter codes.

Data structures
Program uses two data structures:

typedef struct n {

 unsigned int value;

 struct n * parent;

 int bit;

} node;

typedef struct a {

 unsigned int mask;

 unsigned int value;

} code;

node is used to construct a Huffman tree. First of all numbers of occurrences of letters are stored in value fields. While the tree is built, these fields are used to store sums of number of occurrences. When two fields are summed up, they are linked to the sum by parent field. Also one child item is marked 0 and the second one 1 by bit field. When an item isn’t used to a sum, the bit is set to -1. Whole tree is stored in a two-dimensional array.

code is used to link bytes and their Huffman bit-codes representations. mask stores number of meaningful bits and value is a bit-code. 256 code structures are stored in an array.
Files structures
Input files are regular text file. Output files (or input for decompression) have following structure:

· 4 bytes storing and index for Move To Front dencoding

· 4 bytes storing size of compressed data

· 2048 bytes of bit-codes for Huffman decompression

· bytes containing compressed data

Program modules
Program consists of three main .c files. final.c is a main file which opens files and calls functions from other files. compress.c contains functions implementing BWT and MTF algorithms and additional functions. huffman.c is just for Huffman encoding because this algorithm is far more complicated than the rest. There are also .h files for compress.c and huffman.c containing function headers and type definitions.
Program functions
final.c

Here is only int main(int argc, char ** argv) function which takes parameters from the user and calls other functions. If the size of file is greater than 1 MB, it is processed block by block.
compress.c

int compress(unsigned char * inbuf, unsigned char * outbuf, unsigned int size, code CODES[256], int * n);
It’s a function called from main(). It is responsible for calling compression functions in right order and allocating memory for them. Parameters:

· inbuf – buffer where the data read from file are stored

· outbuf – buffer which will be written on disk, contains compressed data

· size – size of data read from disk

· CODES[256] – bit-codes for each byte, they are produced by Huffman algorithm and are saved to a file so decoding is possible
It returns an index for BWT decoding.

int decompress(unsigned char * inbuf, unsigned char * outbuf, unsigned int size, int index, code CODES[256])
Function similar to the previous one but applies algorithms in reverse order and makes decomression.

· inbuf – buffer where the data read from file are stored

· outbuf – buffer which will be written on disk, contains compressed data

· size – size of data read from disk

· CODES[256] – bit-codes for each byte, they are used by Huffman algorithm to restore original data

· n – size of uncompressed data, required by other functions so they know how much data to store

int burrows_wheeler_encode(unsigned char * inbuf, unsigned char * outbuf, unsigned int size)

Implements Burrows – Wheeler Transformation.

· inbuf – input buffer
· outbuf – output buffer which will be written on disk

· size – size of data in input buffer
int rotcmp(const void *l, const void *r)
Helper function for burrows_wheeler_encode. We don’t store every rotation in an array but crate them and compare when needed. l and r are arguments required by qsort. Returns 0, 1, or -1.
int burrows_wheeler_decode(unsigned char * inbuf, unsigned char * outbuf, unsigned int size, int index)
This function restores original data from the form obtained by BWT.
· inbuf – input buffer

· outbuf – output buffer which will be written on disk

· size – size of data in input buffer

· index – number required to restore original order

void mtf_encode(unsigned char * inbuf, unsigned char * outbuf, int size)
Simple function doing Move To Front encoding.

· inbuf – input buffer

· outbuf – output buffer which will be written on disk

· size – size of data in input buffer

void mtf_decode(unsigned char * inbuf, unsigned char * outbuf, int size)
This function undoes changes made by mtf_encode
· inbuf – input buffer

· outbuf – output buffer which will be written on disk

· size – size of data in input buffer

huffman.c
int huffman(unsigned char * inbuf, unsigned char * outbuf, unsigned int size, code CODES[256])
Performs Huffman compression.

· inbuf – input buffer

· outbuf – output buffer which will be written on disk

· size – size of data in input buffer

· CODES[256] – it will be filled with bit-codes by the function so it may be saved to disk and used for decompression

int count_chars(unsigned char * buf, node * amounts, unsigned int size)
Counts number of occurences of each byte in an array.

· buf – input buffer

· node – structure where the result will be stored

· size – size of input buffer

int create_tree(node TREE[256][256], int size)
Creates a Huffman tree. It is stored in an array which first row contains input data (number of occurrences of each byte).

· TREE[256][256] – place for storing the tree and receiving input data

· size – amount of bytes and size of the tree

int lowest(node TAB[256], int * a, int * b, int size)
Returns indexes of two lowest values in an array of node structures. We look at value field.

· TAB[256] – input array

· a – index of first lowest values

· b – index of second lowest value

· size – size of array

int get_codes(node TREE[256][256], code CODES[256])
Created bit-codes using Huffman tree.

· TREE[256][256] – array where the Huffman tree is stored

· CODES[256] – array which we fill with computed bit-codes

int put_bits(unsigned char * inbuf, unsigned char * outbuf, code * bitcode, unsigned int size)
Copies data from input buffer to output buffer by replacing original bytes with their bit-codes.

· inbuf – input buffer

· outbuf – output buffer

· bitcode – pointer to array of bit-codes

· size – size of input buffer

int get_bits(unsigned char * inbuf, unsigned char * outbuf, code * bitcode, unsigned int size)
Opposite to put_bits. Changes bit-codes from input buffer to bytes in output buffer.

· inbuf – input buffer

· outbuf – output buffer

· bitcode – pointer to array of bit-codes

· size – size of input buffer

unsigned int bit_reverse(unsigned int a, int size)
Reverses order of bits in a unsigned int variable.

· a – input variable
· size – range of bytes we operate on
